کشف راه جدیدی برای انجام محاسبات کوانتومی در دمای اتاق

به گزارش نیوزتل دانشمندان متد جدیدی را برای انجام محاسبات کوانتومی در دمای اتاق کشف کردند.
به گزارش نیوزتل به نقل از ایسنا و به نقل از آی ای، محاسبات کوانتومی مدتهاست که بعنوان آینده محاسبات و شاید بعنوان آینده دنیای فناوری مورد ستایش قرار گرفته است، اما مهندسی یک کامپیوتر کوانتومی که در شرایط عادی کار کند برای محققان کار آسانی نیست.
یکی از بزرگترین موانعی که محققان محاسبات کوانتومی باید آنرا برطرف کنند، دمایی است که این دستگاه ها باید در آن کار کنند. تابحال کامپیوترهای کوانتومی فقط در دماهای بسیار پایین در آزمایشگاه کار کرده اند. دمای حدود منفی ۴۶۰ درجه فارنهایت، دمای کار مطلوب کامپیوترهای کوانتومی است. اما این یک دما که به راحتی قابل دستیابی باشد، نیست.
محققان اخیرا متد جدیدی را کشف کرده اند که به کامپیوترهای کوانتومی امکان کار در دمای اتاق را می دهد. این کشف می تواند به شدت هزینه ها را کاهش داده و دشواری ساخت یک دستگاه کوانتومی را کم کند.
ایجاد یک کامپیوتر کوانتومی که در شرایط استاندارد حرارتی کار کند، محققان را یک قدم به انجام محاسبات کوانتومی در انواع کاربردهای جالب توجه نزدیک می کند.
بیشتر کیوبیت ها(qubits) که ذرات کوانتومی اصلی برای عملکرد کامپیوترهای کوانتومی هستند، فقط روی مواد ابررسانا کار می کنند. ابررساناها در دماهای بسیار پایین به بهترین وجه کار می کنند و برای این کار، محققان با استفاده از نقایص “سیلیکون کاربید” برای نگه داشتن کیوبیت ها در مکان های مربوطه استفاده می نمایند. این کار نه تنها ساده تر است، بلکه سبب می شود دستگاه ها بسیار مقرون به صرفه تر باشند.
سیلیکون کاربید یا “SiC” چیز جدیدی برای دنیای محاسبات کوانتومی نیست و مدتی است که بعنوان نگه دارنده بالقوه کیوبیت ها برای کامپیوترهای کوانتومی مورد کاوش قرار گرفته است. حالا محققان دانشگاه لینشوپینگ(Linköping) در سوئد دریافته اند که می توانند کمی خصوصیت های ساختاری سیلیکون کاربید را تغییر داده و سبب شوند که کیوبیت ها به صورت کامل نگه داری شوند.
محققان می گویند: ما مسیری را شناسایی کرده ایم که نشان داده است یک مهندسی کوانتومی خوب می تواند وضعیت بار کیوبیت ها را تثبیت کند. با استفاده از نظریه چگالی عملکردی و مطالعات تجربی انکسار اشعه ایکس سنکروترون، ما یک مدل را برای مراکز نقص توزیع در سیلیکون کاربید ایجاد کردیم که باعث عملکرد دستگاه در دمای اتاق می شود.
در اصل، محققان در حال ایجاد تغییراتی در سطح اتم در سیلیکون کاربید هستند تا اطمینان حاصل کنند که آنها قادر به نگه داشتن کیوبیت ها هستند و در واقع در ماده هایی که می توانند یک کیوبیت را نگه دارند، نقص هایی به اندازه اتم ایجاد می کنند.
در پردازش کوانتومی یک کیوبیت یا بیت کوانتومی واحد پایه ای پردازش کوانتومی و رمزنگاری کوانتومی بوده و مشابه بیت در کامپیوتر های کلاسیک می باشد: کوچکترین واحد ذخیره اطلاعات و معیاری از مقدار اطلاعات کوانتومی است. از نظر فیزیکی، کیوبیت یک سامانه کوانتومی دوحالتی است، یعنی سیستمی که توسط مکانیک کوانتومی به درستی قابل توصیف است و هنگام اندازه گیری یکی از دو حالت ممکن خویش را اختیار می کند. مانند قطبش یک فوتون که در اینجا، جهتِ قطبشِ عمودی و جهتِ قطبشِ افقی دو حالت ممکن برای سامانه هستند. در یک سامانه کلاسیکی، هر بیت در هر لحظه یا در حالت صفر یا در حالت یک است، اما اصل های مکانیک کوانتومی به کیوبیت اجازه می دهند که در همان حال، حالتی را برابر با برهم نهی دو حالت اصلی هم اختیار کند، یک خصوصیت که در پردازش کوانتومی بنیادی است. به عبارتی، یک کیوبیت هم امکان دارد در حالت های کلاسیک صفر و یک وجود داشته باشد و هم می تواند در حالت ترکیب این دو قرار گیرد (یعنی همزمان دارای هر دو حالت صفر و یک باشد). در واقع همین پدیده، تفاوت اصلی بین بیت های کلاسیک و کیو بیت هاست. انتقال کیوبیت ها بنیان دانش دورنوردی کوانتومی است.
“ایگور ابریکوسوف” رئیس بخش فیزیک نظری در دانشگاه لینشوپینگ توضیح داد: برای ایجاد یک کیوبیت، با استفاده از لیزر، نقص نقطه ای در یک شبکه بلوری برانگیخته می شود و هنگامی که فوتونی ساطع می شود، این نقص آغاز به درخشش می کند. پیش از این ثابت شده بود که شش قله در دامنه تابناکی SiC مشاهده می شود که به ترتیب از PL۱ تا PL۶ نام گذاری شده اند. حالا ما فهمیدیم که این به علت نقصی خاص است، جایی که یک لایه اتمی تکی جابجا شده در نزدیکی دو موقعیت خالی در شبکه ظاهر می شود.
محققان در سال ۲۰۱۹ هم آزمایش هایی در سطح تنظیم اتمی انجام دادند، اما در نمونه قبلی، آنها با الماس کار می کردند. در حالیکه فایده استفاده از سیلیکون کاربید این است که نسبت به استفاده از الماس ارزان تر است.
همه اینها از نظر نظریه باید کار کند، اما مانند خیلی از موارد موجود در دنیای کوانتومی، در واقع آزمایش نظریه ها سخت تر از آن است که فکر می نماییم.
مفاهیم و ریاضیات در پشت استفاده از سیلیکون کاربید برای نگه داری کیوبیت ها در دمای اتاق بررسی شده است، اما محققان هنوز تعدادی مانع عملی بر سر راه خود دارند. آنها باید فرآیندی را تدوین کنند که به آنها امکان می دهد این نقص را به صورت استراتژیک در SiC دقیقاً در جایی که به آن احتیاج است، قرار دهند. به قول این تیم تحقیقاتی، آنها برای انجام این کار باید اساساً فرآیندهای خاص خویش را توسعه دهند که زمان می برد.
در پایان، اکتشافات انجام شده توسط این تیم در دانشگاه لینشوپینگ هنوز در مراحل اولیه خود برای اثربخشی عملی هستند، اما امیدوار کننده به نظر می آید و بزودی دانشمندان کوانتومی می توانند راهی به مراتب آسان تر برای توسعه ساختار هسته کامپیوتر های کوانتومی داشته باشند.
این مطالعه در مجله Nature انتشار یافته است.